o TRACKING PERFORMANCE OF ADAPTIVE FILTERS
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Nonstationary data model

principettene! ulladn

Let me assume that for any given data {d(i),x(i)}

cﬂ(i) = A() wf +TLL)
where v(i) is the unmodeled component of the desired and
Is orthogonal to x(i) with variancejhﬁ;LQ,Z@We will further
assume that it is i.i.d. and independent to all {x(i)}.

We will also assume a model for the variation of the
weight vectors w(i) = WD 900

where q(i) is a random perturbation independent of
{x(j),v(j))} assumed zero mean with covariance

Q- E ): 96) j{fj
It is easy to see that the weights will have constant mean.
The initial condition is aiso a random variabie independent
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‘dent of W = [w_\;a((j)....l(o))'xu_),-.-x(o)}

It is easy to see that the weights at each time j are depen-

Now v(i) is independent of w(j) for j<i. v(i) is also indepen-
dent of w(j) defined as w(j) = wy)-w()
and also of the a priori error defined in the nonstationary

”
case a - ey e : e
S Rol)= X(L)W(L)—- X('—)W(L I> [;e&{'z)fréft) {

Excess MSE (EMSE) in the nonstationary case

e () AL = =) W()
= "U"L:L) F‘-QQ((-)

Write

Since v(i) is zero mean and ea(i) are independent
e [e0o] = £ [l 1 O
—> EMSE = ﬂ?«%i\eqcf)zz ALSD
So the EMSE in the nonstationary case can be,evaluated
by the steady state variance of the a priori error.
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‘ary environment is lowered bounded by

A lower bound to the EMSE can be determined as
Lo = v() Wi =vihwlin) = X[ when) -w((—n1+ X (90
| £ cool = E <0 (wicem) -weoo] 4 B [0q¢o]
> e |x)qw]|%= T [RQ) Ve
So the misadjustment of an adaptive filter in a nonstation-
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The degree of stationarity of the data is defined as

DN= | (R

G%

If DN is larger than one, then the filter will not be able to
track them and misadjustment will be large. In the other
cases the fiiter can track.
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Fundamental Energy Conservation Relations

Let us consider any adaptive filter obeying to the condition
w(() = w((=1) + Y X(i) 5((’0’)) w(-1) = ImTM-

which can be written | fﬂwb
W =Wl = (W) ~w (D) =9 20 4(200)

Multiplying from the left both sides by x(i) the a priori and

a posteriori errors are related by
PC‘ _‘e (() ’b’[\x(_c)lé(eﬁ ))
Therefore we have (energy conservation relation)

| w(i) - weolf +n (9] eal O] ‘:}{ weiy -we )|l “((Olerf")[a

\-Qq({): x () !L‘Wizi)“W(C'l))
[ £p () = X0 (WD~ WD)
g s A, X #o 0 fr %()=0)
{ ' ,
W\(' ) el (
Note: In the case of steady state behavior we just need to
re-interpret the weights.
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'Fundamental Variance Relation

From this we can get the variance [ whoy = whte=) +9¢)
ElWeO |t E(\nu‘)leam 1) =€ \w 0 -wii-o|
B ('VL(L lQF(L)l )
And from the random walk model We have |
[[wct) w(c- 1)” = l:”WQ‘ DR GI(L)H V4

= E lW(L ')Hzfeﬂﬁ(t)ﬂj% thp 1)1( )]%Ebmw(t-

We can show that the crossterms are zero due 10 inde-
pendence so

Elw U)HZ +&( " (O]eato]’) =€ l[ ﬁ}(e—o}}z{l_n(&)jLE!v[n)[ep(t'

For steady state performance || &= & W (=]
f—wo € [”l‘-‘-) | *’-a(“)zzj ~TRR) + E["'{“) [ €a () ""’lﬂM(")”:; (emﬁ

'vl = [[]x(i)llzb(e d))|zl -WI_‘TRLQ) =2 E i":‘('-‘) 3[6(6):9
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Tracking Performance of the LMS

In the case of LMS |
wil)= W(_t‘—l)+ (7 X{<) €{)

[_e([)] e ({)= ?qL()-a-'\r(.:)

7 EXOIF e evolts 17 Ta (8) = 2 B (et (fat00)
For small stepsizes we get

E{‘qu) = __Irwt E[[x(nll ]?qtc)’ +'?Oz Ta(R)+ 'v[ Tn(&’j

. ""O' T,.L(R) P’"( |nLQ
E(Qq(ﬁb\}) < >
If we assume independence of inputs and the a priori
error N th_@_
\ VG T(R)

e ————

C ( [’qu(wj)ikm z \/?Tn (R) Tn (Q )




